Fiber Reinforced Composites

Author: P.K. Mallick
Publisher: CRC Press
ISBN: 9781420005981
Size: 14.90 MB
Format: PDF, ePub
View: 40

The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on polymer-based nanocomposites Adds new sections on test methods such as fiber bundle tests and interlaminar fracture measurements Expands sections on manufacturing fundamentals, thermoplastics matrix composites, and resin transfer molding Maintaining the trademark quality of its well-respected and authoritative predecessors, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, Third Edition continues to provide a unique interdisciplinary perspective and a logical approach to understanding the latest developments in the field.

Fiber Reinforced Composites

Author: P.K. Mallick
Publisher: CRC Press
ISBN: 0824790316
Size: 10.76 MB
Format: PDF, Mobi
View: 99

Maintaining the interdisciplinary perspective of the first edition, this reference and text provides comprehensive discussions of all aspects of fiber-reinforced composites, including materials, mechanics, properties, test methods, manufacturing and design. Written from a conceptual point of view and emphasizing fundamentals, the second edition of Fiber Reinforced Composites offers updated and expanded sections including: fibers and matrix, including thermoplastic matrices; discontinuous fibers and laminated structures; static mechanical properties, fatigue properties and damage tolerance; resin flow, bag molding, filament winding and resin transfer molding; and environmental effects.

Fiber Reinforced Composites

Author: P. K. Mallick
Publisher: CRC
ISBN: 0849342058
Size: 11.66 MB
Format: PDF, ePub, Mobi
View: 71

Exploring state-of-the-art composite materials, this newly expanded and revised edition presents thorough coverage of newly developed materials and adds emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials.

Composite Materials

Author: Krishan K. Cha
Publisher: Springer Science & Business Media
ISBN: 9780387743646
Size: 16.45 MB
Format: PDF, ePub, Docs
View: 86

The third edition of Krishan Chawla's widely used textbook, Composite Materials, offers integrated and completely up-to-date coverage of composite materials. The book focuses on the triad of processing, structure, and properties, while providing a well-balanced treatment of the materials science and mechanics of composites. In this edition of Composite Materials, revised and updated throughout, increasing use of composites in industry (especially aerospace and energy) and new developments in the field are highlighted. There is a new chapter on non-conventional composites, which covers polymer, metal and ceramic matrix nanocomposites, self-healing composites, self-reinforced composites, biocomposites and laminates made of metals and polymer matrix composites. The third edition, featuring all figures in color, also includes new solved examples and problems as well as increased coverage of: Carbon/carbon brakes. Composites for civilian aircraft and jet engines. Second generation high-temperature superconducting composites. Composites for use in windmill blades. WC/metal particulate composites. Examples of practical applications in various fields are given throughout the book, and extensive references to the literature are provided. The book is intended for use in graduate and upper-division undergraduate courses, and as a reference for the practicing engineers and researchers in industry and academia.

Composite Materials

Author: Daniel Gay
Publisher: CRC Press
ISBN: 9781466584877
Size: 14.72 MB
Format: PDF, ePub, Mobi
View: 24

Considered to have contributed greatly to the pre-sizing of composite structures, Composite Materials: Design and Applications is a popular reference book for designers of heavily loaded composite parts. Fully updated to mirror the exponential growth and development of composites, this English-language Third Edition: Contains all-new coverage of nanocomposites and biocomposites Reflects the latest manufacturing processes and applications in the aerospace, automotive, naval, wind turbine, and sporting goods industries Provides a design method to define composite multilayered plates under loading, along with all numerical information needed for implementation Proposes original study of composite beams of any section shapes and thick-laminated composite plates, leading to technical formulations that are not found in the literature Features numerous examples of the pre-sizing of composite parts, processed from industrial cases and reworked to highlight key information Includes test cases for the validation of computer software using finite elements Consisting of three main parts, plus a fourth on applications, Composite Materials: Design and Applications, Third Edition features a technical level that rises in difficulty as the text progresses, yet each part still can be explored independently. While the heart of the book, devoted to the methodical pre-design of structural parts, retains its original character, the contents have been significantly rewritten, restructured, and expanded to better illustrate the types of challenges encountered in modern engineering practice.

Principles Of Composite Material Mechanics Third Edition

Author: Ronald F. Gibson
Publisher: CRC Press
ISBN: 9781439850053
Size: 13.99 MB
Format: PDF, Docs
View: 91

Principles of Composite Material Mechanics, Third Edition presents a unique blend of classical and contemporary mechanics of composites technologies. While continuing to cover classical methods, this edition also includes frequent references to current state-of-the-art composites technology and research findings. New to the Third Edition Many new worked-out example problems, homework problems, figures, and references An appendix on matrix concepts and operations Coverage of particle composites, nanocomposites, nanoenhancement of conventional fiber composites, and hybrid multiscale composites Expanded coverage of finite element modeling and test methods Easily accessible to students, this popular bestseller incorporates the most worked-out example problems and exercises of any available textbook on mechanics of composite materials. It offers a rich, comprehensive, and up-to-date foundation for students to begin their work in composite materials science and engineering. A solutions manual and PowerPoint presentations are available for qualifying instructors.

Engineered Interfaces In Fiber Reinforced Composites

Author: Jang-Kyo Kim
Publisher: Elsevier
ISBN: 0080530974
Size: 17.16 MB
Format: PDF, Mobi
View: 42

The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume. The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces. The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.